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ABSTRACT  

In this paper, we review one of the most effective finan-
cial multi-factor models, called Returns Based Style Analy-
sis (RBSA), from the standpoint of its performance in de-
tecting dynamic factor exposures of hedge funds using only 
fund performance data. We analyze the shortcomings of 
earlier models in capturing changes in a dynamic portfolio 
structure and lay the groundwork for a new approach, which 
we call Dynamic Style Analysis (DSA). The problem is 
treated as that of estimating a time-varying regression 
model of the observed time series with the inevitable neces-
sity to choose the appropriate level of model volatility, 
ranging from the full stationarity of instant models to their 
absolute independence of each other. We further propose an 
efficient method of model estimation and introduce a novel 
measure of the validity Predicted 2R  that is used to select 
the model parameters. Using both model and real hedge 
fund returns we illustrate the advantages of the proposed 
technique in analysis of hedge funds. 

KEYWORDS  
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1 Introduction  

The Hedge fund industry has grown rapidly over the past 
decade to almost $1 trillion in assets and over 8,000 funds. 
At the same time, the amount of information on hedge funds 
available to investors is negligible as compared to tradi-
tional investment products such as mutual funds. In many 
cases, the only available information on a hedge fund is a 
time series of monthly returns and a vague description of 
the strategy. Returns are then analyzed using a variety of 
multi-factor models in order to detect the sensitivity of the 
hedge fund strategy to various risk factors (factor expo-
sures) as well as to explain the fund’s past performance. 

One of the most effective and practical multi-factor mod-
els for analysis of investment portfolios, called Returns-
Based Style Analysis (RBSA), was put forth by Sharpe 
[1,2]. In the RBSA model, the periodic return of a portfolio 
is approximated by the constrained linear regression of a 
relatively small number of single factors represented by the 
periodic returns of generic market indices, each of which 
represents a certain investment style or sector (market capi-
talization, quality, duration, region, etc.).  

In order to account for allocation changes in active portfo-
lios, Sharpe used a moving window of some preset length 
[2], assuming that the structure of the portfolio is constant 
inside the window.  

Fung and Hsieh [3] applied RBSA to hedge funds where 
the method was reduced to unconstrained linear regression 
to account for shorting and leverage typical of hedge fund 
strategies. They note a significant loss of explanatory power 
applying RBSA to hedge funds as compared to traditional 
investment products such as mutual funds (0.25 and 0.75 
median 2R respectively). They conclude that such a low 2R  
is due to the dynamic nature of hedge fund strategies and 
introduce generic indices designed to capture hedge fund 
dynamics, thus increasing median 2R  to 0.4 using the same 
static regression approach.  

In [4], Fung and Hsieh further explore the issue of non-
stationarity of RBSA and introduce a method to detect 
structural breakpoints in factor exposures to improve the 

2R , but otherwise the allocations remain constant within 
the estimation window.  

As a generalization of the static RBSA model, we propose 
a dynamic model in which a portfolio weights are consid-
ered as changing with time. The proposed approach, which 
we call Dynamic Style Analysis (DSA), consists of estimat-
ing a time-varying regression model of the observed time 
series of a portfolio’s periodic returns and those of generic 
market indices. Time-varying regression has been subject of 
intensive study in statistical and econometric literature over 
the last fifteen years [5,6]. In this paper, we consider the 
problem of estimating a time-varying regression model of a 
portfolio in its inevitable connection with the necessity of 
choosing the appropriate level of volatility of results, rang-
ing from the full stationarity of instant regression models to 
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their absolute independence of each other. In selecting the 
volatility level, we use the “leave-one-out” principle widely 
adopted in Machine Learning [7,8].  

One of the main results of this work is application of dy-
namic programming algorithm in implementing the “leave-
one-out” procedure and providing, thereby, linear computa-
tional complexity of the algorithm relative to the length of 
the time series.  

We illustrate the proposed approach to portfolio analysis 
by applying it to both model and real hedge fund strategies. 

2 Returns Based Style Analysis  

In RBSA model [1], the periodic return of a portfolio ( )pr  
is approximated by the return on a portfolio of assets indices 

( )ir  with weights (1) ( )( ,..., )nβ β  equal to fractions invested in 
each asset at the beginning of the period under the assump-
tion that the entire budget is fully spent on the investment:  

 ( ) ( ) ( )
1

np i i
i

r r
=

≅ α + β� . (1) 

In [2], this model was used to analyze the performance of 
a group of US mutual funds and determined that a signifi-
cant portion of a fund’s return could be explained by a small 
number of assets. In order to estimate the parameters of the 
model (1), monthly returns of both the portfolio ( ){ }p

tr  and 

asset indexes ( ){ }i
tr  for consecutive months 1,2,3,...t =  

were used to solve the following constrained quadratic op-
timization problem:  

( )2
(1) ( ) ( ) ( ) ( )

1 1

( ) ( )
1

ˆ ˆˆ( , ,..., ) : min,

0, 1.

N nn p i i
t tt i

ni i

i

r r
= =

=

� α β β − α − β →�
�
�β ≥ β =�

� �

�
  (2) 

The resulting coefficients (1) ( )ˆ ˆ( ,..., )nβ β  help to identify the 
major factors determining portfolio performance.  

Further, recognizing that portfolio structure changes over 
time, Sharpe used a series of optimizations in moving win-
dows of a smaller length K  to determine the dynamics of 
portfolio factor exposures:  

( )21(1) ( ) ( ) ( ) ( )
0 1( ),

ˆ ˆˆ( , ,..., ) arg min .
K nn p i i

t t t t k t kk ii r r
−

− −= =α β
α β β = −α − β� �  (3) 

Model (2) has become commonly adopted in financial 
practice under the name of Returns Based Style Analysis 
(RBSA). The main appeal of this method for practitioners is 
that it is based solely on analysis of portfolio returns and 
does not require any other, very often proprietary, informa-
tion about the portfolio composition.  

The two major factors contributing to such wide accep-
tance of RBSA are its ease of interpretation and stability of 
results. It is worth noting that both of these factors are the 
direct result of the presence of non-negativity constraints in 
(2). These constraints, being the major innovation in RBSA, 
provide important prior information about the analyzed 
portfolio, i.e., the fact that most of investment portfolios 
such as mutual funds don’t take short (negative) positions.  

Since its introduction in 1992, RBSA model (1) has been 
criticized for its inability to capture an active portfolio’s 
dynamics. Thus, because portfolio structure is assumed con-

stant within the estimation window, the moving window 
technique (3) appears to be inadequate to capture rapid 
changes in portfolio structure.  

In addition, model (1) loses much of its advantage when it 
is applied to the analysis of portfolios which are allowed to 
take short (negative) positions. In such cases, the non-
negativity constraints ( ) 0iβ ≥  have to be dropped from (2), 
and the problem is reduced to a simple linear regression. In 
many such cases, due to multicolinearity, the moving win-
dow method (3) produces highly unstable, meaningless re-
sults.  

The two limitations above often make RBSA inadequate 
for analysis of hedge funds because, unlike traditional in-
vestment vehicles such as mutual funds, hedge funds can be 
extremely dynamic and take significant short positions.  

Usually attempts to overcome these shortcomings of 
RBSA consist of the introduction of additional indices into 
the static model (1) to capture the specifics of a generic 
hedge fund strategy [3]. None of the methods available to 
date represent a true dynamic model and, therefore, their 
explanatory power remains low.  

3 Limitations of RBSA: Dynamic model of a 
hedge fund  

We will illustrate the shortcomings of RBSA using a sim-
ple model of an equity long-short hedge fund. The long po-
sition of the sample fund is created using Russell 1000 
Value and Growth indices with weights following a sine-
wave pattern as shown in Figure 1.  

The fund is invested 100% in the Russell 1000 Growth as 
of Jan-96 and then shifts assets into Russell 1000 Value 
with a relatively low 50% annual turnover. At any point in 
time the sum of both index weights is equal to 100%. We 
then create a long-short model portfolio by 100% hedging 
the long portfolio with the S&P 500 Index, i.e., effectively 
subtracting the index returns from the long portfolio return.  
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Figure 1. The long-short model portfolio.  

Next, we apply a rolling 12-month window RBSA (3) on 
the composite monthly return time series of the model port-
folio using, as regressors, the same three monthly indices 
that were used in its construction. The results are presented 
in Figure 2 where estimated allocations are stacked along 
the Y-axis. 
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Figure 2. Estimated model portfolio, 12-month trailing 

window.  

The results don’t materially change when we vary the 
window size. In Figure 3 we show the result of rolling a 24-
month window.  
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Figure 3. Estimated model portfolio, 24 month trailing 

window.  

Although the turnover of the model portfolio is low and 
the number of assets very small, RBSA fails to adequately 
identify the model. Since no noise was added to the model 
portfolio returns, this provides clear indication that such 
poor model identification is the result of the window-based 
approach and multicolinearity as noted in Section 2, rather 
than noise in data as it is usually assumed. In Table 1 below 
we present the correlation matrix of assets used in construc-
tion of the model portfolio computed over the same 10-year 
period using monthly returns. The numbers in brackets rep-
resent the range of correlations computed over rolling 24-
month windows.  

The dynamic model introduced in this paper eliminates 
the shortcomings of traditional RBSA and makes it applica-
ble to long-short strategies and hedge funds. 

Table 1. The correlation matrix of assets constituting the 
model portfolio.  

 R1000G R1000V S&P500 

R1000G 1.00   

R1000V 0.71 (0.27;0.95)  1.00  

S&P500 0.94 (0.88;0.99) 0.90 (0.67;0.99) 1.00 
 

4 Dynamic Style Analysis (DSA)  

In contrast to static model (1), we propose a model in 
which factor exposures of the portfolio change in time. Let 

1,2,...,t N=  be a sequence of holding periods, for instance, 
days, weeks, months, quarters or years, and  

( , 1,..., )tB t N= =ββββ , (0) (1) ( )( , ,..., )n
t t t t= β β βββββ , ( )

0
1

n i
ti=

β =� ,   

be the respective sequence of the portfolio’s exposures at 
the beginning of each period. The notation (0)

tβ  is reserved 
in this case for a short-term instrument, such as bank de-
posit in an interest bearing account, often referred to as a 
risk-free asset.  

For simplicity, we express the model in terms of excess 
returns on the portfolio ( ) (0)( )p

t tr r−  and assets ( ) (0)( )i
t tr r−  

with respect to the return on the risk-free asset (0)
tr . This 

equivalent notation effectively eliminates the need for the 

budget constraint (0) ( )
1

1
n i

t ti=
β + β =�  in (1). The new dy-

namic model of periodic portfolio returns can be written as 
follows:  

( ) (0) ( ) ( ) (0) ( ) ( )
1 1

( ) ( )
n np i i i i T

t t t t t t t t t t t ti i
y r r r r x e e

= =
= − = β − = β + = +� � xββββ .(4) 

Here ( ) (0)( )p
t t ty r r= −  are known excess returns of the portfo-

lio for each period t , and ( ) (0)( ), 1,...,i n
t t tr r i n� �= − = ∈� 	x �  are 

known vectors of observed excess returns of assets for these 
periods, whereas (1) ( )( ,..., )n n

t t t= β β ∈ββββ �  are vectors of time-
varying fractional asset weights to be estimated.  

The key element of the proposed Dynamic Style Analysis 
(DSA) is the treatment of fractional asset weights as a hid-
den process assumed a priori to possess the Markov prop-
erty:  
 1t t t t−= +Vβ β ξβ β ξβ β ξβ β ξ , (5) 

where matrices tV  determine the assumed hidden dynamics 

of the portfolio structure, and tξξξξ  is the vector white noise, 

non-stationary in the general case.  
Equation (5) determines the state-space model of a dy-

namic system, while (4) plays the role of its observation 
model. In these terms, the DSA problem can be described as 
estimating the time-varying state of the respective dynamic 
system ( )( , ) ( , ), 1,...,tB Y X Y X t N= =ββββ  from observations 

( , )Y X =  ( )( ) (0) ( ) (0)( , ) ( ),( ), 1,..., , 1,...,p i
t t t t t ty r r r r i n t N� �= − − = =� 	x .  

For estimating time-varying models of this kind (4)-(5), 
we use the Flexible Least Squares approach (FLS) first in-
troduced in [5]. As applied to the DSA problem, the FLS 
criterion has the form  

2
1 11 2

ˆ( , , ) arg min ( , 1,..., | , ),
( , 1,..., | , )

( ) ( ) ( ).

t

t
N NT T

t t t t t t t t t tt t

B Y X J t N Y X
J t N Y X

y − −= =

� λ = =
� = =�
� − +λ − −�� �x V U V

ββββ
ββββ

β β β β ββ β β β ββ β β β ββ β β β β
  (6) 

The assumed covariance matrices tQ  of white noise tξξξξ  in 

(5) occur here in the inversed form 1
t t

−=U Q . We shall addi-

tionally assume matrices tV  to be non-degenerate, in this 
case, they also determine the reversed dynamics of the time-
varying regression coefficients.  

The positive parameter λ  in (6) is responsible for the 
noise ratio in (4)-(5), i.e. for the level of smoothness of re-
gression coefficients. Thus, the smoothness parameter λ  
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balances the two conflicting requirements: to provide a 
close approximation of portfolio returns and, at the same 
time, to control the smoothness of asset weights tββββ  over 
time. 

Note that proposed DSA approach to analysis of a portfo-
lio returns makes it possible to identify structural shifts 
(breakpoints) in asset weights. Such shifts can be attributed 
to rapid changes in the portfolio positions, use of derivative 
instruments, etc. and in most cases are hidden from public. 
The DSA approach to breakpoint identification is based on 
local relaxation of smoothness requirement in (6) and is 
discussed at length in [9].  

5 The cross validation principle of estimating 
the smoothness parameter  

The FLS criterion (6) depends on a number of parameters. 
Matrices tV  and tU  of the transition model (5) can be de-
fined a priori, depending on the model of hidden dynamics 
of time-varying regression coefficients and the “style” of 
smoothing of their estimates. For example, matrix tV  can 
be defined as the unity matrix thus requiring simple 
smoothness of estimates. Alternatively, we could allow for 
non-smoothness of asset weights by incorporating market-
driven changes of weights into a transition model (5) as 
follows1:  

( )
( ) ( ) ( )1

1( ) ( )
1 10

1

(1 )

i
i i it

t t tn k k
t tk

r

r
−

−

− −=

+
β = β + ξ

β +�
, 0,...,i n= , 2,...,t N= . 

  
As to the coefficient λ , it is extremely problematic to pre-

set its value a priori.  
If the volatility parameter is given a certain value λ , the 

FLS estimate of time-varying regression coefficients (6) 

will be a function of λ , ( )ˆˆ ( , , ) ( , , ), 1,...,tB Y X Y X t Nλ = λ =ββββ . 

It is impossible to find an “appropriate” value of λ  by at-
tempting to additionally minimize the residual sum of 

squares in (6) ( )2

11
ˆ ( , , ) min

N T
t t tt

y Y X−= λ− λ →� xββββ .  

Indeed, as λ → ∞ , the second sum in (6) totally prevails 
over the first sum, the values of the hidden process become 
functionally related to each other ˆ ( , , )t Y X λ =ββββ  

1
ˆ ( , , )t t Y X− λV ββββ , and the model is reduced to a static regres-

sion. Alternately, as 0λ→ , the instantaneous values be-

come a priori independent, each estimate 1
ˆ ( , , )t Y X− λββββ  is 

determined practically by only one current element of the 
time series ( , )t ty x , and the model will be “extremely” 
time-varying.  

It is now easy to see that one can achieve 100% fit of ty  
in (6) using arbitrary explanatory variables by adjusting the 
smoothness parameter. These variables can be totally unre-
lated to the analyzed portfolio return. Moreover, even when 

                                                           
1 This clearly leads to nonlinearity in criterion (6) which can be 

addressed, for example, by using iterations of linear models [9].  

explanatory variables are selected properly, changing the 
smoothness parameter can lead to very different results. It is 
therefore crucial that this parameter is estimated from data, 
because in most cases analysts don’t have enough informa-
tion about underlying hedge fund positions and their dy-
namics.  

Actually, the sought-for sequence of time-varying regres-
sion coefficients ( )( , , ) ( , , ), 1,...,tB Y X Y X t Nλ = λ =ββββ  is a 

model of the observed time series ( , )Y X =  

( )( ) (0) ( ) (0)( , ) ( ),( ), 1,..., , 1,...,p i
t t t t t ty r r r r i n t N� �= − − = =� 	x , and the 

choice of λ  is the choice of a class of models which would 
be most adequate to the data [7,8]. A commonly used meas-
ure of regression model fit is its coefficient of determina-
tion 2R . In [2], the 2R  was defined as the proportion of the 
portfolio volatility explained by systematic exposures using 
the moving window technique (3). In terms of the FLS cri-
terion (6), the coefficient of determination is expressed by 
the ratio  

( ) ( )2 22
2 1 1 1

2 2
1 1

ˆ ˆ( ) ( ) ( )
1 .

( ) ( )

N N NT T
t t t t t t tt t t

N N

t tt t

y y y
R

y y
= = =

= =

− − λ − λ
= = −� � �

� �

x xβ ββ ββ ββ β
(7) 

By decreasing λ , it is easy to drive 2R  up to 100% but at 
the same time, obtain highly volatile, meaningless estimates 
of fractional asset weights ˆ ( , , )t Y X λββββ .  

The major reason for this shortfall of the 2R  statistic is 
that it uses the same data set for both estimation and verifi-
cation of the model. The Cross Validation method sug-
gested by Allen [10] under the name of Prediction Error 
Sum of Squares (PRESS) is aimed at overcoming this obsta-
cle. According to this method, an observation is removed 
from the sample, the model is evaluated on the remaining 
observations, and the prediction error is calculated on the 
removed observation. This procedure is then repeated for 
each observation in the sample, and the sum of squared er-
rors is computed. The Cross Validation (CV) principle is 
widely used in data analysis [11,12], including pattern rec-
ognition, where the procedure is known under the name of 
“leave-one-out” [8,13].  

The essence of the Cross Validation principle can be ex-
plained as the assessment of the adequacy of the given 
model by estimating the variance of the residual noise ( )D e  
in (4) and comparing it with the full variance of the goal 

variable 2
1

( ) (1 ) ( )
N

tt
D y N y

=
= � . When computing the er-

ror at a time t , it is incorrect to use the estimate ˆ
tββββ  ob-

tained by minimizing the criterion (6) including the obser-
vation at that time ( , )t ty x . The CV principle leads to the 
following procedure that provides a correct estimate of the 
observation noise variance.  

In the full time series ( )1 1( , ),...,( , )N Ny yx x , single ele-

ments 1,...,t N=  are skipped one by one ( 1 1( , ),...,y x  

)1 1 1 1( , ), ( , ),...,( , )t t t t N Ny y y− − + +x x x , each time replacing the 

sum ( )
2

1
( )

N T
t t tt

y
=
� �− λ� 	� xββββ  in (6) with the truncated sum 
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( )
2

1,
( )

N T
s s ss s t

y= ≠
� �− λ� 	� xββββ . The optimal vector sequences 

( ) ( )
1

ˆ ˆ( ,..., )t t
Nβ ββ ββ ββ β  are found where the upper index ( )t  means 

that the observation ( , )t ty x  was omitted when computing 
the respective estimate. For each t , the instantaneous 
squared prediction error is calculated using the respective 

single estimate ( )
2

( ) ( )
Tt

t t ty� �− λ� 	xββββ . The cross-validation 

estimate of the noise variance is found as the average over 
all the local squared prediction errors  

 ( )
2

( )

1

1 ˆˆ ( | ) ( )
N Tt

CV t t t
t

D e y
N =

� �λ = − λ� 	� xββββ   (8) 

The smaller ˆ ( | )CVD e λ , the more adequate the model with 
the given value of the smoothness parameter λ  for the ob-
served time series ( )1 1( , ),...,( , )N Ny yx x .  

The cross-validation estimate of the residual noise vari-
ance ˆ ( | )CVD e λ  can be further scaled to make it comparable 
across different analyzed portfolios. We suggest the cross-
validation statistic  

 2
ˆ ˆ( ) ( | ) ( | )

( ) 1
( ) ( )

CV CVD y D e D e
PR

D y D y
− λ λ

λ = = − .  (9) 

which we call Predicted R-squared. Note that it is computed 
similarly to the regression R-squared statistic (7).  

We suggest a method of determining optimal model pa-
rameters that consists of processing the given time series 
( )1 1( , ),...,( , )N Ny yx x  several times with different tentative 

values of λ . Each time, the model adequacy is assessed by 
the averaged squared prediction error (8) estimated by the 
cross validation procedure. The value ∗λ  that yields the 
maximum value of the cross-validation statistic (9) is to be 
taken as the smoothing parameter recommended for the 
given time series:  
 2arg max ( )PRλ

∗λ = λ .  (10) 
It should be noted that the selection of model parameters 
through minimizing the prediction error makes this method 
a version of the James-Stein estimator [11].  

6 Kalman filter and smoother for 
minimization of flexible least squares and 
cross validation  

The FLS criterion (6) is a quadratic function, and its 
minimization leads to a system of linear equations. At the 
same time, it belongs to the class of pair-wise separable 
optimization problems [14]. In these, the objective function 
is the sum of functions each dependant on not more than 
two vector variables, in this case 1t−ββββ  and tββββ  associated 
with immediately successive time moments. As a result, the 
matrix of the system of linear equation in respect to vari-
ables 1,..., Nβ ββ ββ ββ β  has a block-threediagonal structure, which is 
efficiently solved by the double-sweep method, a quadratic 
version of the much more general dynamic programming 

method [14]. These algorithms are, in turn, equivalent to the 
Kalman filter and smoother [15].  

First, the Kalman filter runs along the time series (signal)  
 ( )1|1 1 1 1 1

Ty= x x xββββ , 1|1 1 1
T=Q x x  at 1t = ,   

 1
| 1| 1 | 1| 1( )T

t t t t t t t t t t t t ty−
− − − −= + −V Q x x Vβ β ββ β ββ β ββ β β , 2,...,t N= , (11) 

( )
( )

1 1
| 1| 1 1| 1

1 1
1| 1

(1 )

                                  (1 ) .

T T
t t t t t t t t t t t t t t

T
t t t t t t t

− −
− − − −

− −
− −

= + + λ =

+ + λ

Q x x U V V U V Q Q V

x x V Q V U
 (12) 

The intermediate vectors |t tββββ  and matrices |t tQ  are parame-

ters of the Bellman functions | ( )t t tJ ββββ  which are quadratic in 

this case [15]:  

| 1 | | |

2
1 1 11 2

1 1,...,( ) min ( ,..., ) ( ) ( ) ,

( ,..., ) ( ) ( ) ( ).

T
t t t t t t t t t t t t t

t tT T
t t s s s s s s s s s ss s

t
J J const

J y − −= =

−
= = − − +

= − +λ − −� �

Q

x V U V

β ββ ββ ββ ββ β β β β β ββ β β β β β ββ β β β β β ββ β β β β β β

β β β β β β ββ β β β β β ββ β β β β β ββ β β β β β β
 

Here 1( ,..., )t tJ β ββ ββ ββ β  are partial criteria of the same structure 

as (6). The minimum points |t tββββ  of the Bellman functions 

yield the filtration estimates of the unknown regression co-
efficients at current t  under the assumption that the time 
series is only observed up to point t .  

Then, the Kalman smoother runs backwards 1,...,1t N= − :  

 | 1 |
ˆ ˆ( )t t t t t t t+= + −Hβ β β ββ β β ββ β β ββ β β β ,  (13) 

( )
( )

1

1 1 1 | 1 1 1
11 1 1

1 1 1 |

( ) ( )

                                  (1 ) ( ) .

T T
t t t t t t t t t

T
t t t t t

−

+ + + + + +
−− − −

+ + +

= λ + λ =

+ λ

H V U V Q V U V

I V U V Q
 (14) 

The resulting sequence is just the minimum point of the 

FLS criterion (6) ( )ˆˆ ( , , ) ( , , ), 1,...,tB Y X Y X t Nλ = λ =ββββ .  

To compute the “leave-one-out” estimate of the noise 
variance (8), we have to find the estimate of each regression 
coefficient vector ( ) ( )ˆ ( , , )t t

t Y X λββββ  from the time series 
( ) ( )( , )t tY X =  ( )( , ), 1,..., 1, 1,...,s sy s t t N= − +x  where the ele-

ment ( , )t ty x  is cut out. This means that, when running the 

Kalman filter, we have to use the matrix ( )
|
t

t t =Q |
T

t t t t− =Q x x  

( ) 11 1
1| 1 (1 )t t t t t

−− −
− − + λV Q V U  at step t instead of |t tQ  (12).  

7 The Computational Complexity of DSA  

Straightforward application of the cross validation princi-
ple (8)-(10) in determining the value of the smoothness pa-
rameter implies running the Kalman filtration-smoothing 
procedure (11)-(14) N  times for each removed observation 
corresponding to time period t , which prevents maintaining 
the linear computational complexity of the algorithm. To 
analyze 120N =  monthly returns of a portfolio using 10n =  
economic sectors as variables, the quadratic problem (6) 
with 1,200Nn =  variables can easily be done using the 
standard Kalman filter-smoother with linear computational 
complexity with respect to N . But in order to compute the 
cross-validation statistic (9) corresponding to a single value 
of the smoothness parameter, 120N =  such optimizations 
are required, and computing the CV statistic on a grid of 20 
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values of this parameter requires solving 20 2,400N =  prob-
lems (6), i.e. 2,400 runs of the optimization procedure. 

To avoid repeated processing of the signal for each tenta-
tive value of λ , a technique incorporating the computation 
of the “leave-one-out” error (8) into the main dynamic pro-
gramming procedure is proposed in [15]. It is shown that 
the estimate ( )ˆ ( )t

t λββββ  is determined by the expression  

 ( ) ( ) ( ) 0 1 0 0
| | |

ˆ ˆ( ) ( , , ) ( ) ( )t t t
t t t N t t N t N t tY X −λ = λ = − −Q Q Q Q �β β ββ β ββ β ββ β β ,  

where matrices |t NQ  are also computed on the backward 

run of the Kalman smoother for 1,...,1t N= −   

( ) 11 1 1 1
| 1 1| 1 | 1 1 1( ) ( )T T T

t N t t t N t t t t t t t

−− − − −
+ + + + + += + +λQ H V Q V H Q V U V ,   

starting with matrix |N NQ  found at the last step of the Kal-

man filter (12).  

8 Testing the DSA Approach: Dynamic model 
of a hedge fund  

We applied the DSA approach (6) to the model portfolio 
developed in Section 3 with the smoothness parameter λ  
selected in accordance with (10). The result of this analysis 
is shown in Figure 4.  

In order to test the sensitivity of the model to noise in the 
data, we added idiosyncratic white noise to the portfolio’s 
monthly returns in the amount of 20% of the portfolio vola-
tility1. The resulting portfolio returns were analyzed, and the 
output corresponding to the maximum value of the CV sta-
tistic is shown in Figure 5. This result corresponds to the 
optimal smoothness parameter 0.2λ =  selected to provide 
the maximum value of the 2PR  statistic (10).  
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Figure 4. DSA approach – estimation of the model 

portfolio.  
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Figure 5. DSA approach – noisy model portfolio.  

                                                           
1 Since the standard deviation of monthly returns over 120 months 

makes 1.1%σ = , we applied white noise (0,0.22)N . 

9 Case Studies  

In this section, we present examples of the application of 
the dynamic multi-factor methodology developed in this 
paper to real-life hedge funds. 

9.1 Laudus Rosenberg Value Long/Short Fund  

According to the fund prospectus, the Laudus Rosenberg 
Value Long/Short mutual fund2 used computer models to 
buy underpriced US stocks and sell short other stocks in 
order to maintain both market and sector neutrality. Such 
neutrality is very important for investors because it protects 
their investment in market downturns.  

Fund monthly returns are shown in Figure 6. We will 
compare performance of the traditional RBSA and Dynamic 
Style Analysis (DSA) in determining sensitivity of the fund 
returns to economic sectors.  
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Figure 6. Fund returns.  

For our analysis we used 10 indexes provided by Dow 
Jones Indexes3. The result of the analysis using a 36-month 
window RBSA (3) is presented in Figure 7.  
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Figure 7. Results using RBSA in 36 month window.  

                                                           
2 Laudus Rosenberg Value Long/Short (Ticker: BRMIX) is a mutual 

fund employing a strategy similar to a long-short hedge fund. In-
formation on this fund is available on finance.yahoo.com and 
www.morningstar.com  

3 Source: indexes.dowjones.com  
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The result is very volatile and unrealistic with 2 0.60R =  

(7). Shortening the estimation window produces higher 2R  
value but much more volatile results.  

We then applied the DSA approach using the same return 
data and selected the optimal parameter λ  in accordance 
with (10). The resulting sector exposures are presented in 
Figure 8.  

In Figure 9 we present the values of criterion 2 ( )PR λ  
(10) corresponding to various λ  plotted along the logarith-
mic axis and the optimal value of the smoothness parame-
ter ∗λ at the intersection of the two dashed lines. Even 
though the weights are much less volatile in Figure 8 than 
those in Figure 7, the resulting 2 0.86R =  (7) is much 
greater than 0.6, which was determined by the RBSA trail-
ing window. The corresponding optimal value of the Pre-
dicted 2R  (10) is 2 ( ) 0.53PR ∗λ = .  

Created with MPI Stylus™ (Data: Morningstar®)

Time Series of Sector Exposure - DSA

-100

-75

-50

-25

0

25

50

W
ei

gh
t,

 %

��Jan/01 ��Dec/01 ��Dec/02 ��Dec/03 ��Dec/04 ��Dec/05

Utilities
Telecomm
Technology
Consumer, NCycl
Industrial
Healthcare
Financial
Energy
Consumer, Cycl
Basic Materials

 
Figure 8. DSA-estimated asset weights.  

Therefore, the proposed technique allowed us to achieve a 
much closer approximation of the fund return pattern with a 
significantly more realistic pattern of sector exposures.  
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Figure 9. Selection of smoothness parameter.  

9.2 Long Term Capital Management (LTCM)  

The collapse of this highly-leveraged fund in 1998 is by 
far the most dramatic hedge fund story to date. At the be-

ginning of 1998, the $5B fund maintained a leverage ratio 
of about 28:1 [16,17]. LTCM’s troubles began in May-June 
1998. By the end of August, the fund had lost 52%. By the 
end of September, 1998, a month after the Russian crisis, 
the fund had lost 92% of its December 1997 assets. Fearing 
the destabilizing impact of the highly leveraged fund on 
global financial markets, on September 23rd, the Federal 
Reserve Bank of New York orchestrated a bailout of the 
fund by a group of 14 major banks.  

The investment strategy of the fund was based on spread 
bets between thousands of closely related securities in vari-
ous global markets. Such bets are based on the assumption 
that the securities’ prices will eventually converge and the 
arbitrage position will result in a profit. In fact, spreads con-
tinued to increase, which eventually led to the collapse of 
the fund. It took several major investigations, including one 
commissioned by President Clinton [17], to determine that 
the major losses sustained by LTCM came from bets on 
global credit spreads. 

We use the DSA methodology to determine the major fac-
tors explaining LTCM’s losses in 1998 using the fund’s 
monthly returns. We also determine the leverage ratio, an 
important risk factor which, according to published figures 
[16,17], increased from 28:1 to 52:1 in 1998. The fund’s 
1998 monthly returns in January-August shown in Figure 
10 were obtained from public sources [18]. Daily or weekly 
returns, if available, would provide far greater accuracy. 
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Figure 10. LTCM monthly returns in 1998.  

For our analysis we used the following indexes provided 
by Lehman Brothers and Merrill Lynch: US Corporate and 
Government Long Bond Indices, European (EMU) Corpo-
rate and Government Bond Indices and the US Mortgage-
Backed Securities Index. The result of the analysis is pre-
sented in the Figure 11. Asset exposures tββββ of the fund for 

each time period are "stacked" along the Y-axis, with the 
sum equal to 100%. The negative weights shown below the 
X-axis correspond to borrowed assets and represent lever-
age. Evidently, the leverage comes from credits spreads – 
both US (Corp Index vs. Govt Index) and EMU (Corp Index 
vs. Govt Index). There is also significant exposure to Mort 
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gages. Our results show that the leverage increased from 
35:1 (or 3,500%) to 45:1 (4,500%) during 1998, which is 
close to the figures published in [16,17]. 

The result corresponds to the optimal smoothness coeffi-
cient λ  which was selected to provide the maximum value 

of the Predicted 2R statistic. The 2R of this result is 0.99, 
while Predicted 2R  is 0.98.  
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Figure 11. LTCM Estimated Asset Weights t� .  

The “growth of $100” chart in Figure 12 showing the per-
formance of LTCM in 1998 presents an excellent model fit, 
where the performance of the fund is very closely approxi-
mated by the model. In chart, the “Total” line represents the 
fund and the “Style” represents the model.  
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Figure 12. LTCM performance tracking.  

Following Allen’s application of leave-one-out PRESS 
statistic in model selection [10], in Table 2 we use cross-
validation static Predicted 2R  (10) to illustrate “optimality” 
of the result obtained in our analysis of the LTCM. In the 
table, we show the impact on Predicted 2R  from either re-
moval of each of the model assets or adding new assets. It 
shows that the full model with 5 assets is preferable, having 
the highest Predicted 2R equal to 0.98.  

Table 2. Model selection in the LTCM analysis. 19  
Max Predicted 2R  Asset Name 

Asset removed Asset added 
EMU Corp Bonds 0.861  
EMU Govt Bonds 0.857  
US Gov Long Bonds -0.5381  
US Corp Long Bonds 0.839  
Mortgages 0.965  
European Stocks  0.948 
US Small Stocks  0.977 

 
We then computed monthly Value-at-Risk (VaR) corre-

sponding to asset exposures in Figure 11 using two years of 
monthly returns for the asset indices employed in the analy-
sis. Depending on the parameters of calculation (such as 
decay factor, distribution assumptions, etc.), the 99% sys-
tematic VaR for June-August 1998 is in the 30%-55% 
range. Therefore, 10-50% of the monthly losses sustained 
by the fund during this period should have been expected if 
proper VaR methodology was used. As mentioned above, 
applying DSA to higher frequency data (daily or weekly) 
could have produced much more accurate estimates of po-
tential losses.  

9.3 Replicating a Hedge Fund Index  

The purpose of this section is to demonstrate how the 
DSA methodology developed in previous sections can be 
employed to replicate the performance of a hedge fund 
strategy index using generic asset indices. 

Most hedge fund database vendors publish performance of 
hedge fund strategy indices – weighted aggregates of funds 
within groups representing a similar investment strategy. 
These indices are readily available from a number of hedge 
fund database vendors2. For our analysis we used monthly 
returns of the HFR Equity Hedge Index representing the 
Long/Short category, which is one of the most representa-
tive. Below, we provide the category definition from the 
HFR website:  

Equity Hedge investing consists of a core holding of long 
equities hedged at all times with short sales of stocks and/or 
stock index options. Some managers maintain a substantial 
portion of assets within a hedged structure and commonly 
employ leverage. Where short sales are used, hedged assets 
may be comprised of an equal dollar value of long and 
short stock positions. Other variations use short sales unre-
lated to long holdings and/or puts on the S&P 500 index 
and put spreads. Conservative funds mitigate market risk by 
maintaining market exposure from zero to 100 percent. Ag-
gressive funds may magnify market risk by exceeding 100 
percent exposure and, in some instances, maintain a short 
exposure. In addition to equities, some funds may have lim-
ited assets invested in other types of securities. 

                                                           
1 Models with negative cross-validation 2R  are typically rejected 

as inadequate [19].  
2 Among the most widely used: HFR (Hedge Fund Research) 

www.hedgefundresearch.com, CSFB/Tremont 
www.hedgeindex.com, Eurekahedge www.eurekahedge.com, 
and others. 
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The HFR Equity Hedge index represents an equal-
weighted composite of the 615 funds in the category. Even 
though individual hedge funds engage in frequent trading 
and utilize derivatives, our contention is that in the index, 
specific risk is diversified and its returns can be explained 
by a handful of systematic factors. Since most hedge funds 
in the category invest in equities, we used the following 
indices for our analysis: 6 Russell Equity Indices (Top 200 
Value/Growth, Midcap Value/Growth, Russell 2000 – 
Small Cap Value/Growth) as proxies for US Equities, and 
MSCI EAFE Index as the proxy for international equities 
and ADRs. We used the Merrill Lynch 3-Month TBill index 
as a proxy for cash. Monthly returns for 7 years from July 
1999 to June 2006 of both the hedge fund index and generic 
asset indices were used. 

The results of DSA analysis (6) corresponding to the op-
timal value of parameter λ  is shown in Figure 13. The 
quality of regression fit is very high: 2R = 0.98 and Pre-
dicted 2R = 0.90.  
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Figure 13. Equity Hedge Index: DSA analysis  

In Figure 14 we present values of criterion 2 ( )PR λ  corre-
sponding to various values of coefficient λ  plotted along the 
logarithmic X-axis. Note that the results in Figure 13 were 
obtained using λ  corresponding to the highest 2 ( )PR λ . The 
analysis of exposure levels in Figure 13 present several inter-
esting observations. First, the average leverage level in this 
category (as measured by the magnitude of short exposures 
below the X-axis) is relatively small and stable. Note also that 
market exposure has increased dramatically over 2005-2006 
(especially to international equity markets represented by 
EAFE index), almost to year 2000 levels.  

After creating the “in-sample” replication described above 
of the Equity Hedge index, we used the same methodology 
to replicate the index “out-of-sample.” We used the first 60 
months of data from July 1999 through June 2004 to deter-
mine allocations to generic indices as of June 2004. We 
then computed the return for the replication portfolio of 
generic indices for July 2004 using index returns for July 
2004 and allocations estimated for June 2004 via DSA. We 
then expanded the estimation interval to include 61 months 
through July 2004 and estimated the replication portfolio 
return for August 2004. We then repeated the process for 
each of the remaining months through June 2006.  
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Figure 14. Equity Hedge Index: smoothness selection.  

In Figure 15 we show cumulative performance for the 
HFR Equity Hedge Index and its “out-of-sample” replica-
tion (“Benchmark”) for the two years July 2004 – June 
2006. It is clear that index performance has been replicated 
very closely.  
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Figure 15. Equity Hedge Index: performance replication  

In Figure 16 we compare allocations of both “in-sample” 
DSA analysis of the Equity Hedge Index (equivalent to the 
one in Figure 13) and allocations of its “out-of-sample” 
replication. Note that the latter starts 60 months after the 
start of the data sample and the asset weight estimates are 
more volatile than the former. 
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Figure 16. Equity Hedge Index: replication portfolio  
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10 Conclusions  

In this paper we provide a framework for truly dynamic 
analysis of hedge funds. The proposed Dynamic Style 
Analysis approach is implemented as a parametric quadratic 
programming model with a single parameter controlling the 
smoothness of estimated asset weights on the one hand, and 
regression fit on the other. 

Typically, there’s no prior information available about 
dynamics of hedge fund asset weights or factor exposures, 
which makes it important to have a way to determine the 
optimal value of the smoothness parameter based on avail-
able return data. In addition, there is a need to measure the 
model adequacy, because by adjusting the smoothness pa-
rameter it is easy to achieve a perfect fit. 

Instead of the traditionally used coefficient of determina-
tion 2R  (7), we use here the “leave-one-out” cross-
validation and Predicted 2R  to solve both of the above-
mentioned issues. We illustrate our approach using a model 
hedge fund portfolio as well as three real-life case studies as 
examples of detecting leverage and changing exposures of 
hedge funds. Aside from its use in the parameter selection 
above, the Predicted 2R  serves as a measure of the model 
validity. Similarly to the PRESS statistic that it is based on, 
it can be used to select the best set of factors as the one pro-
viding the highest value of the Predicted 2R .  

A modification of the Kalman filter-smoother by incorpo-
rating the “leave-one-out” procedure has allowed us to es-
cape the seemingly unavoidable loss of the linear computa-
tional complexity with respect to the length of the time se-
ries. The proposed technique for implementing quadratic 
optimization algorithms is very practical and can be exe-
cuted on a personal computer. 

The proposed DSA approach has made it possible to fun-
damentally improve the existing RBSA methodology cur-
rently employed in Finance. It results in increased transpar-
ency and better hedge fund due diligence which is of crucial 
importance for financial institutions today. 
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